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Abstract

Time-series data are every where. They are important in stock market analysis, eco-
nomics, sales forecasting, and the study of natural phenomena such as temperature and
wind speed [Han and Kamber, 2006]. The growing size of such data, as well as its variable
statistical nature, make it a challenging problem for data mining algorithms to predict, clas-
sify and index. We will focus here on time-series data classification by shedding the light on
the researches done in this area.

1 Introduction

Time-series data is a sequence of values obtained at different time points [Lee et al., 2004].
Usually, those values are evenly distributed across the time domain [Dunham, 2002]. Val-
ues can be just real numbers as in the case of univariate time-series, or they can be nu-
merous observations received in each time point as in the case of multivariate time series
(MTS) [Yang and Shahabi, 2004]. A typical example is when data is collected from different
sensors, and data is usually stored in two-dimensional metric to represent the different obser-
vations and the number of variables at each of them [Yang and Shahabi, 2004]. Please notice
that the terms time-series data and sequential data will be used interchangeably in this review.
While there is no notion of time in sequential data such as text and gene sequences, the order
of the data is important when dealing with it, as noted by [Laxman and Sastry, 2006]. Hence,
as we will see later on, that many of the approaches meant to deal with one are also suitable for
the other.

Statisticians tried to offer new methods for studying time-series data; however, most of time-
series data are non-stationary. Non-stationary time-series data, as pointed out by [Priestley, 1988],
are defined by their varying statistical properties with time. More flexible models were made to
cover these issues, such as Autoregressive integrated moving average (ARIMA) [Box et al., 1970],
however it still have its limitation by assuming a linear model for the data [Zhang, 2003].
[Priestley, 1988] criticized all previous statistical models, stating that in almost all of them
time-series is assumed to confirm to a linear model, and is assumed to be either stationary or
can be reduced into a stationary one by some transformations.

Data Mining algorithms, on the other hand, were able to offer better solutions. [Zhang, 2003]
highlighted that Artificial Neural Networks (ANN) doesn’t require us to specify the model for the
data, but it rather builds the model utilizing the data used in the training process. He added
that this makes it easier and more suitable for different kinds of data models. Nevertheless,
classical machine learning techniques are designed to deal with static data and cannot simply
be used with time-series data. [Vilar et al., 2009] stated that classical algorithms ignore the
autocorrelation structure of time-series data. Similarly, [Keogh and Kasetty, 2003] pinpointed
that “the high dimensionality, very high feature correlation, and the (typically) large amounts
noise that characterize time series data” are the main issues facing classical machine learning
algorithms when dealing with time-series data. Hence, many researches try to find new algo-
rithms or adapt the existing ones to suit time-series data. And we are going to focus on the
classification algorithms here.

Classification is defined by [Dunham, 2002] as mapping data into predefined classes. The classi-
fier is built using training date and the classes are defined beforehand, hence it is referred to as
a supervised learning method, as opposed to clustering. Among the techniques used in classifi-
cation, [Aggarwal, 2002] listed decision trees, nearest neighbour and neural networks. More on
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these techniques will come later on. When it comes to sequential data, [Dong, 2009] explained
that classification can either be used to match a whole sequence to a class of other sequences,
or to find out if a subsequent belongs to a certain sequence.

1.1 Related Work and Review Structure

As in classification, [Liao, 2005] concluded that all the algorithms designed for clustering time-
series data either try to modify the existing static data algorithms to handle the sequential
data, or modify the data itself for the existing algorithms to be able to handle it. He added that
the ones dealing with time-series data as it is, try in response to find new similarity measures
suitable for the sequential nature of the data. Whereas those doing conversion on the sequential
data either extract a feature-vector from it to be fed to the classifier (clustering algorithm is his
case), or come out with a model for the data. [Keogh and Kasetty, 2003] limited their review to
classification algorithms that rely on providing new similarity measures, while [Xing et al., 2010],
on the other hand, categorized the classification algorithms into a similar categorization to those
of [Liao, 2005]. Similarly, we are going to study the classification algorithms in the following
order in section 2:

• Distance-based classification

• Feature-based classification

• Model-based classification

The rest of the report is organized as follows. In section 3 we are going to have a detailed critique
of the time-series shapelet-based classifier introduced by [Ye and Keogh, 2009], followed by our
conclusion at the end.

2 Time-series classification

2.1 Distance based classification

Classification algorithms such as k nearest neighbour (kNN) depend on the the distances between
data. And for conventional classification algorithms to work with sequential data, new measure-
ments has to be found to determine the distance between two sequences. [Xing et al., 2010]
argues that the choice of distance (similarity) measures play a significant role in the quality of
the classification algorithm.

He added that, although Euclidean distance (ED) is a widely adopted measurement, it re-
quires the two series in comparison to be of equal length. In additions to this limitation,
[Keogh and Kasetty, 2003, Ratanamahatana and Keogh, 2004a] emphasised on its sensitivity to
distortion in time. [Sakoe and Chiba, 1978] highlighted that distortion in time-axis is common
in speech recognition application where speech rate is not constant. They added that the distor-
tion is also non-linear, hence linear transformation will not be sufficient. [Nerbonne et al., 1999]
tried to overcome the time fluctuation by pro-processing (transcribing) the acquired spoken
words, however such approach is not practical in most of the cases. In the same fashion,
[Chan et al., 2003, Ji et al., 2005] mentioned that in web logs and biomedical data, comparing
sequences with gaps is more useful than those without gaps. Thus, elastic similarity measures
such as Dynamic time warping distance (DTW) were needed to solve this problem.

[Ratanamahatana and Keogh, 2004a] explained DTW as a non-linear mapping between two se-
quences where the distance between them is minimized. They further explained the algorithm,
where “n ∗m” matrix is constructed, and each element in it represents a pairwise distance be-
tween points in the two sequences. A path in the matrix is then searched where the total sum of
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distances is minimal, which is then returned as the distance between the two strings. Although
many researchers [Aach and Church, 2001, Bar-Joseph et al., 2002, Yi et al., 1998] agreed on
the superiority of DTW over Euclidean distance, its computational inefficiently is limiting its
adoption [Ratanamahatana and Keogh, 2004b]. DTW is calculated using dynamic program-
ming, hence has a quadratic time complexity (O(n∗m) or O(n2)) [Ratanamahatana and Keogh, 2004a,
Xing et al., 2010]. DTW should meet the following local constraints [Sakoe and Chiba, 1978,
Keogh and Ratanamahatana, 2005, Yu et al., 2011]:

1. Boundary constraint

2. Monotonicity constraint

3. Continuity constraint

Knowing that the minimal path does fall around the diagonal of the matrix, some researches
tried to exploit this fact, in addition to the constrains, in order to speed up the DTW calcula-
tions [Xi et al., 2006].

When it comes to symbolic sequences, such as DNA sequences and text strings, alignment-
based sequences are preferred [Xing et al., 2010]. [Durbin et al., 1998] states that in evolution-
ary biology DNA sequences are subject to insertions, deletions and substations. Substitutions
for example represent basic mutation processes. Meanwhile, biologists need to find out if se-
quences are coming from common ancestors by comparing them. He added that both global
and local alignments can be measured, whereas local alignment algorithms (such as Smith-
Waterman [Smith and Waterman, 1981] and BLAST [Altschul et al., 1990]) try to measures the
similarity of sub-sequences rather than for the whole sequence.

[Durbin et al., 1998] describes Needleman-Wunsch global alignment algorithm as follows: A
similar matrix to the one described in DTW is built where each axis represents one of the two
sequences. The initial value of all the cells is set to zero. Then we fill the matrix applying
the formula shown in equation 1, starting from the bottom-right cell, using what is known as
traceback procedure.

F (i, j) = max


F (i− 1, j − 1) + s(xi, yj),
F (i− 1, j) − d,
F (i, j − 1) − d

(1)

Where S(x,y) is the log likelihood ratio of the pair(a,b) occurring as an aligned pair as opposed
to an unaligned pair, i.e. a way to the similarity of two characters in biological sequences. And
d is defined as the gap-open penalty.

[Durbin et al., 1998] highlighted that algorithms (such Needleman-Wunsch [Needleman et al., 1970]
and Smith-Waterman [Smith and Waterman, 1981]) are calculated using dynamic programming,
hence their complexity is O(n2). Hence, as noted by [Vinga and Almeida, 2003], more optimum
algorithms such as BLAST [Altschul et al., 1990] and FASTA [Pearson et al., 1990] were pre-
sented later on. The newer algorithms use heuristic approaches, which means that although they
are faster in comparing sequences [Tatusova and Madden, 2006], they do not guarantee finding
the optimal score [Durbin et al., 1998]. Additionally, BLAST 2.0 [Tatusova and Madden, 2006]
is a tool that utilizes BLAST engine for pairwise sequence comparison, yet it is proposed as an
alternative when comparing two sequences that are already known to be homologous.

As mentioned earlier, sequential data can be multivariate. [Yang and Shahabi, 2004] noticed
that breaking multivariate time series (MTS) into separate series and processing each one on
its own result in overlooking the correlation between those variables. They presented a newer
distance-measurement algorithm, Eros (Extended Frobenius norm), in order to deal with MTS.
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2.2 Feature based classification

Classical classification algorithms, such as ANN and Decision Trees, do their classification based
on feature-set, hence feature-based time-series classification techniques work on transforming the
sequential data into feature-set before handing it to the classification algorithms [Xing et al., 2010].
The choice of the appropriate features is the hardest part of this process, and as mentioned by
[Eads et al., 2005], there is always trade-off between doing this process manually by domain-
experts or having it automated but less accurate in many cases. Patterns and wavelet decom-
position, as we will see now, are ways for extracting features from sequential data.

[Laxman and Sastry, 2006] define patterns as short structures that reflects local characteristics of
a sequence, such as local spikes in time-series data or the patterns where genes normally appear
in a genetic sequence separated by chunks of non-coding DNA. [Xing et al., 2010] added that for
patterns to be used in a classification algorithm they should guarantee that they are frequent
in at least one class, and should be significantly correlated with it. [Laxman and Sastry, 2006]
elaborated that a prototype feature sequences are typically defined for each class after the
training process, then new data sequences are classified based on how close they are to that
prototype. In a sense, both patterns and models, (we will come to models later on), are ways to
represent data in an abstract way, however, models tend to reflect the global characteristics of
the data, while patterns reflect its local ones, They added that the prototype features, acquired
during the training phase for each class, normally vary in length. This is why elastic measurement
methods, such as the dynamic time warping discussed earlier, are sometimes needed to evaluate
how close is a given pattern to our prototypes.

[Ye and Keogh, 2009] noticed that algorithms that try to identify tree-leaves based on their
shapes are mislead by the deformation in their shapes due to insects eating parts of them.
Instead of relying on the whole shape of the leaves (global features), they selected local features
(patterns) that particularly discriminates the leaves from different trees. They converted the
shape data into a sequential one. The aim is to find sub-sequences, or shapelets as they called
them, that are discriminating between classes. To determine which sub-sequences are to be
chosen, they ordered all sequences according to their (Euclidean) distance from all possible
shapelets. Then they started to search for a mid-point that divides member-sequences of each
class. Having a discriminative approach [Leslie et al., 2002], i.e. binary decisions are taken to
tell whether a new sequence belongs to a certain class or not, [Ye and Keogh, 2009] had to use
a decision trees in their classifier. The more classes we have, the more branches and split points
has the tree. (More on the “shapelets” will come later on in section 3)

Similarly, [Ji et al., 2005] introduced a pattern-extraction algorithm called Minimal Distinguish-
ing Subsequence (MDS). However, MDS allow for gaps with in the sub-sequences, which makes
it more suitable to classifying biological sequences as mentioned earlier.

Another feature-extraction technique is to transform the time-series data into the frequency do-
main, where data dimensionality can be reduced. [Yang and Shahabi, 2004] listed DFT (Discrete
Fourier Transform), DWT (Discrete Wavelet Transform) and SVD (Singular Value Decompo-
sition) as examples here. However, [Li et al., 2005] notes that DWT is more common in clas-
sification since it preserves both time and frequency characteristics, whereas DFT provides the
frequency characteristics only. Such transformation also solves a problem discussed earlier, in 2.1,
where we need to study both local and broad trends within the sequential data [Aggarwal, 2002].
DWT transforms the data into different frequency components [Daubechies et al., 1992]. The
components with higher order coefficients reflect the global trends of the data, while the ones
with lower order coefficients reflect the local trends in it [Aggarwal, 2002].

Kernel methods (KM) are also good in feature extraction, additionally, they can deal with
symbol-sequences with different lengths [Watkins, 1999]. Although [Joachims, 1998] was deal-
ing with text data as a bag of words rather than sequential data, he highlighted the ability
of kernel methods to deal with textual data regardless of its huge number of features; nor-
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mally more than 10k. He was using Support Vector Machine in particular, which is one of the
kernel methods. KM calculates the inner product of the input vectors in a high dimensional
space [Lodhi et al., 2002]. By doing so, linear decision boundaries can be drawn between the
classes [Leslie et al., 2002]. Unlike [Joachims, 1998], [Lodhi et al., 2002] used KM to classify
text as sequential data. Like alignment-based distance measures, kernel methods are widely
used in biological sequences classification [Liao and Noble, 2003, Zavaljevski et al., 2002].

2.3 Model based classification

According to [Liao, 2005], the model-based methods constructs a model for the data within
a cluster (class in our case) and classify new data according to the model that best fits it.
He divided the models used in classification into statistical and neural network ones. Accord-
ing to [Rabiner, 1989], the statistical models such as: Gaussian, Poisson, Markov and Hidden
Markov Models, are constructed so that they models the probability distribution of the data.
[Laxman and Sastry, 2006, Dunham, 2002], on the other hand, divided models into predictive
models that tries to predict unavailable values of the data using the existing one, and descriptive
models that tries to find patterns and relationships in the data. We will focus on the predictive
models since those are the ones used in classification, especially Markov models which is used a
lot in sequence classification applications [Laxman and Sastry, 2006].

Hidden Markov Model (HMM) is defined by [Baldi et al., 1994] as “a set of states S, an alphabet
of m symbols, a probability transition matrix T = (tij), and a probability emission matrix
E = (eia). When the system is in state i, it has a probability tij of moving to state j and a
probability eia of emitting symbol a”. [Laxman and Sastry, 2006] explained the use of HMM in
classification as follows: For each class, a HMM is built using training data from that class, then
new patterns are compared to the built models to decide which model (class) fits the new data the
best. [Birney, 2001] argues that HMM is more successful in biological sequences classifications,
compared to Neural Networks, since it can deal with variable-length sequences, while the other
technique require fixed-length inputs. [Rabiner, 1989], on the other hand, pinpointed some of
HMM general limitations, such as the assumption that the probability of being in a certain
states relies only in the previous state, as well as the assumption that the probabilities of the
observations are independent. Similarly, [Graves et al., 2006] criticize the assumption of states
probability independence, adding that HMM requires prior domain-specific knowledge to choose
the input features.

Generally, artificial neural networks (ANN) are very close to statistical models [Ruck et al., 1990].
[Giles et al., 2001] defines recurrent neural networks (RNN) as special type of ANN, where there
is a feedback connection in the network to keep track of its internal state when dealing with
new inputs. RNN is suitable for sequential data since, according to [Giles et al., 2001], RNN is
capable of modelling the temporal nature of the sequence. Also, [Graves et al., 2006] stated that
in contrast to HMM, RNN does not require knowledge of the data. He also claimed that RNN
is immune to temporal noise. Nevertheless, as seen earlier, they require fixed-length inputs.

3 Critique of shapelet-based classifier

As we have seen in 2.2, [Ye and Keogh, 2009]’s aim is to find sub-sequences (shapelets) that
can be used in building decision trees to classify sequences. To determine the discriminative
sub-sequences they used the concept of information gain applied by [Olshen and Stone, 1984].
[Quinlan, 1986] describes this concept as follows:

Suppose we have a group of objects p and n which belong to classes P or N respectively. And
arbitrary object belongs to P with with the ratio of p to the total number of objects (p+n),
similarly it belongs to N with the ratio of n to (p+n). Hence, the information (entropy) of
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message source generating such data can be expressed in the following equation:

I(p, n) = − p

p + n
log

p

p + n
− n

p + n
log

n

p + n
(2)

Now if we use a decision tree to divide a group D into two groups D1 and D2, the information gain
(Gain(sp)) for using the value sp to split the data D into two subsets is defined as the difference
between the entropy before the splitting (I) and the information remaining in the entire dataset
after splitting the data (Î). The following equations are taken from [Ye and Keogh, 2009]:

Gain(sp) = I(D) − Î(D) (3)

[Ye and Keogh, 2009] stated that the remaining information after the split is obtained by calcu-
lating the weighted average entropy of each subset. Defining the fractions of objects in D1 and
D2 as f(D1) and f(D2) respectively, they ended with the following equation:

Gain(sp) = I(D) − (f(D1)I(D1) + f(D2)I(D2)) (4)

Now, to construct a decision tree for our sequential data, we need to find a shapelet and a
splitting pint (sp), so that when ordering all the sequences according to their distance from the
chosen shapelet, the gain after splitting the sequences using sp will be maximum. Distances
between new sequences and the chosen shapelet will then be calculated, and if the distance is
within the splitting point they will be considered as members of the same class as that of the
shapelet, i.e. discriminative classification [Leslie et al., 2002].

A shapelet is typically much shorter than the sequences. And as highlighted by [Mueen et al., 2011],
it creates a compact representation of the class. This means a reduction in the computational
memory and time needed during the classification process. [Ye and Keogh, 2009] asserted the
complexity of the classification to be O(m̄l), where m̄ and l are the the average length of the
sequences to be classified and that of shapelet respectively. However, we still need to discuss
the following tasks in more details to better understand the performance of the training phase.

• Obtaining all candidate shapelets

• Ordering the sequences based on their distance from the chosen shapelet

A series of m points can be divided into m(m+1)
2 possible sub-sequences of lengths 1 to m [Mueen et al., 2011].

In their search of a candidate shapelet, [Ye and Keogh, 2009] can divide all the k sequences in
their training sets into all possible sub-sequences. They, however, found it more practical to
limit their search to sequences within a certain minimum and maximum range. Nevertheless,
the size of the candidate shapelets set is in the range of m̄2k, which means that the complexity
of the process increases exponentially with the sequences lengths.

As you have notices, distances here are measured between sequences of different lengths, hence
Euclidean distance was redefined by [Ye and Keogh, 2009] as the minimum distance between
the smaller sequence and all possible sub-sequences of the same length in the other. Moreover,
the distance calculation between the possible shapelets and the sequences in the training set
was pointed out by [Ye and Keogh, 2009] to be the most most expensive calculation in the
algorithm. Two improvements they presented in the paper later on to speed-up the process:
“early abandon” and “early entropy pruning”. They first keep on calculating the differences
between the corresponding points in the shapelet and each segment of a sequence. However,
when the total differences exceeds the minimum distance between the shapelet and another
segment of that sequence, the calculation is abandoned, since we are only concerned with the
minimum distance here. The other improvement was presented when they noticed that the
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entropy calculation is less resource-intensive than the distance calculations. They then decided
to calculate the best-case information gain (upper bound) for the remaining sequences after each
time they calculate the distance between a new sequence and the shapelet, if the gain is not
any better than the maximum gain obtained so far, they stop any further calculations. They
tested their classification algorithm on what they said to be the largest class-labelled time-series
dataset they are aware of 1. They concluded that the two improvements combined resulted
in a three orders of magnitude speed-up. Later on, [Mueen et al., 2011] presented additional
improvement, where they sacrificed additional computer memory resources in exchange of time
by caching and reusing repetitive calculations.

Finally, [Ye and Keogh, 2009] justified the shapelet-based classifier by comparing it to 1NN
using Euclidean Distance, showing better results for the shapelets. However, [Xing et al., 2011]
argued that the algorithms focuses only on the local features and may not be suitable for cases
where global features are more differentiating between classes. [Mueen et al., 2011] also argued
that a single shapelet might not be enough on its own to differentiate between classes, so they
altered [Ye and Keogh, 2009] to use a combination of multiple shapelets, or what they called
logical shapelets.

4 Conclusion

As we have seen, there are different approaches for classifying sequential data. The nature of
data dictate different algorithms sometimes, while the memory and the classification speed are
deciding factors some other times.
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